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Motivation

- Multinational firms are often multi-product, with each product manufactured and sold
in many (but not all) countries.

- Decisions on where to produce and where to sell a product are often interdependent.
- Production and sales decisions across products may also be interdependent.

- Nontrivial implications of policies/shocks: a product- and country-specific production
or consumption subsidy may induce changes in production and sales decisions for all
products in the firm’s portfolio.

- Focus on the global car industry: firms are multi-product, multi-plant, & multi-market,
and industry has recently been the target of large industrial policies .



This Paper

- Static model with firms deciding where to produce and sell each product in a portfolio.

Fixed selling costs: binary choice of whether to sell each product in a location.
Fixed production costs: binary choice of whether to produce each product in a location.
Nested CES demand: cannibalization across a firm’s products sold in a location.

Export platforms: cannibalization across a firm’s production locations for each product &
complementarities between selling and production location choices.

No strategic interactions between firms; monopolistically competitive model.

- Provide an algorithm to bound the solution to the firm’s problem: solution method for
single-agent CDCPs featuring both pairwise complementarities and substitutabilities.

- Use bounds on the firm’s solution & moment inequalities to estimate model.

- Use bounds on the firm’s solution to predict changes in global car industry in reaction
to changes both in national consumption and production subsidies and in tariffs.
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Quantitative Model




Setting

Static equilibrium model for a global industry (car segment).

Continuum of firms (brands) indexed by /.

The firm operates an exogenous & finite portfolio of models indexed by j =1,..., J.

The firm simultaneously decides where to produce and sell each model in its portfolio.

Index production locationsby o =1,..., N and destinationsby n=1,..., N.



Demand

- Nested CES demand in every destination:
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- Given an exogenous shifter A,, the demand equation for a model jj equals:

Cijn = An(l,bin)ﬁ_1 (lpijn)‘o_1 (Pin)p_W(Pij )—p.

In empirics, ¥;, and ¥;;, depend on firm and model effects, respectively, and covariates



Marginal Costs and Market Structure

- Marginal production costs:

Cijo = PiPoPon(i)Pi-
In empirics, both ¢,y and ¢;; are functions of observed characteristics.

- lceberg trade costs:

Ton = KnKon-

In empirics, xop, is a function of covariates.



Fixed Costs of Product Entry and Production Location

- Fixed costs of selling product jj in destination n:
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In empirics, 7y p; is a function of covariates.

- Fixed costs of producing model jj in origin o:
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and dj, a categorical variable with
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Pricing Equation and Variable Gross Profits

- Potential price of model jj in destination n is:

Pin(0y) = ;L5 % gin, {Toncio}.
//0_

with Djj = {Dj,}0 and Dj, = 1 if model jj is produced in o (and zero otherwise).

- Variable potential gross profits of selling model jj in market n are:

Tiin(lin, D;) = Ajn(Pin(lin, D;))* " (Pjin(Dj)) " ~*,
Pin( <le/n< Un n )) —P>11p,

with D; = {Dji }}.0 lin = {ljn}; and I = 1 if model jj is sold in n (and zero otherwise).

’/



Optimal Product Entry and Production Location Decisions

- Each firm chooses /; = {ljn};» and D; = {Djp}; o to maximize profits:
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- The following pairs have weakly negative cross partials:
1. Djo and Dy for j # j' or 0 # 0,
2. ljjpand ly, forj £ f',
3. Djo and Iy, for j £ J',
and the following pairs have weakly positive cross partials:
1. Djjp and Iy, for all (o, n).



Solution Algorithm For “General” CDCP




Marginal Value & Cross-Partial

The firm’s problem is of the form
C* = argmaxgcprk 71(C)

with BX the set of 2K K-dimensional binary vectors: the K-dimensional Boolean set.

Forany k ={1,..., K}, define the marginal value of k under C as
A(m(C)) = m(CH71) — m(CK79),

where, for example, Ck~1 is the vector C with the kth coordinate set to one.

Thus, Ak (7t(C)) is the change in 77(C) when changing the kth coordinate from zero to
one holding all other coordinates constant.

Forany k,/ ={1,..., K}, define the cross partial of k and / under C as

Au(7(C)) := Dk (A)(7(C))) (= Di(Ak(7(C)))).



Complementarities and Substitutabilities

Assumption
ForallC € BX,andall k,1 € {1,..., J}, the sign of Ay (7t(C)) is known and independent of C.

- We do not require 77(C) to be either submodular or supermodular, or to exhibit single
crossing differences in choices (Jia, 2008; Arkolakis et al., 2023).

- We define a dummy sy, that equals 1 if Ag(7(C)) > 0 for all C (and O otherwise).



Vocabulary

- Meet: Let A be a set with a partial order <, and let x, y € A. An element m of Ais the
meet (or the greatest lower bound or infimum) of x and y and is denoted a A b if the
following two conditions are satisfied:

1. m<xandm<y.
2. Foranyw e A/if w < xandw < y,thenw < m.

The meet may not exist, but, if it does, it must be unique.

- Join: Let A be a set with a partial order <, and let x, y € A. An element j of A is called
the join (or the smallest upper bound or supremum) of x and y and is denoted aV b if
the following two conditions are satisfied:

1. j>xandj>y.
2. Forany w € A if w > x and w > y, then w > j (that is, j is smaller than or equal to any
other upper bound of x and y).

The join may not exist, but, if it does, it must be unique.



Vocabulary

- If the power set 3(X) of some set X is partially ordered by the partial order C, then
the meet of any two elements of 3(X) is their intersection and the join is their union;
thatis, for any a, b € B(X), we have aAb=anbandaVv b= auUb.

- Consider the set 7 = {{1}, {2}, {1,2,3}, R} partially ordered by C. Then, {1} v {2}
= {1,2,3} but the meet, {1} A {2}, does not exist. However, the meet {1} A {1,2,3}
exists and equals {1}. Thus, join and meet may exist for two elements of a partially
ordered set but not for a different pair of elements of the set.

- Inset F = {{1},{2},{1,2,3},{0, 1,2}, R} partially ordered by C, the join {1} v {2}
does not exist. Note that {1} C {1,2,3} and {2} C {1,2,3},and {1} C {0,1,2} and
{2} € {0,1,2},but {1,2,3} £ {0,1,2} and {0,1,2} Z {1,2,3}.

- Consider F = {{1},{2},{0,2,3},{0,1,3}} partially ordered by C. Then, {1} v {2}
does not exist as there is no element w € F such that {1} C wand {2} C w.



Vocabulary

- Note that meet and join may be defined for more than two elements. For example, let
A be a set with a partial order <, and let x, y, z € A. An element m of A is the meet (or
the greatest lower bound or infimum) of x, y, and z and is denoted A{x, y, z} if:

1. m<x,m<y,andm< z
2. Foranyw e Aifw < x,w<y,andw < z,thenw < m.

We can similarly define the join of x, y, z € A.

- Consider the set 7 = {{1},{2},{1,2,3},{0,1,2}, R} partially ordered by C. Then,
{1,2,3} A {0, 1,2} does not exist. Note that, {1} C {1,2,3} and {1} C {0, 1,2}, and
{2} € {1,2,83}and {2} C {0,1,2},but {1} € {2} and {2} Z {1}. Conversely, meet
N{{2},{1,2,3},{0,1,2}} exists and is equal to {2}. The join {1,2,3} v {0, 1,2} also
exists and is equal to IR.



Vocabulary

- Lattice: a partially ordered set (L, <) such that for any {a, b} C L, meet and join exist.

- Sublattice: non-empty subset of a lattice that is itself a lattice by the partial order of
the larger lattice. That is, for any {a, b} in the sublattice, considering exclusively the
elements of the sublattice itself, meet and join exist.

- Complete lattice: partially ordered set (L, <) such that for every subset S C L, meet
and join exist.

- Complete sublattice: a subset of a complete lattice that is itself a complete lattice by
the partial order of the larger complete lattice. That is, for any subset of the complete
sublattice, considering exclusively the elements of the complete sublattice itself, meet
and join exist.

- Any finite and non-empty lattice is complete.

- The empty set is a lattice but not a complete lattice. As the empty set is a subset of
every set and is a lattice, it is then a sublattice of every lattice.



Vocabulary

Mapping = function.

A function is monotone increasing (equivalently, montonically increasing, increasing,
weakly increasing, or non-decreasing) if for all x and y such that x < y, it is the case
that f(x) < f(y), so f preserves the order.

A function is strictly increasing if for all x and y such that x < y, one has f(x) < f(y).

One can similarly define monotone decreasing and strictly decreasing functions.



Tarski’'s Theorem

Theorem (Tarski 1955)
Let (L, <) be a complete lattice. Suppose F: L — L is monotone increasing; i.e. forall x,y € L,
x <y = F(x) < F(y). The set of fixed points of F is then a complete lattice with respect to <.

- Implication of 1 of Tarski (1955): the set of fixed points of F is non-empty. Proof: the
empty set is not a complete lattice.

- Implication of 2 of Tarski (1955): by starting from the join of L and applying iteratively
the mapping F, one converges to the join of the set of fixed points in a finite number
of iterations. Proof: denote as L the join of L; if F(L) = L, the L is the join of the set of
fixed points of F; if F(L) = Awith A # L, then it must be that A < L; if F(A) = A A
must the join of the set of fixed points of F; if F(A) = B with B # A, then it must be
that B < A, and so on.



Our Approach: Complete Lattice

- Denote as S(BK) the set of all sublattices of the partially ordered set { BX, <}.
- If K = 2, then BK = {(0,0), (1,0),(0,1),(1,1)} and

={2,{(0,0)},{(1,0)},{(0. )}, {(1. 1)}, {(0,0), (1,0)},{(0,0), (0. 1) } }
{(0,0), (1, 1)}, {(1,0), (1. 1)}, {(0,1), (1. 1)}, {(0,0), (1,0), (1, 1)},
{(0,0).(0,1),(1,1)},{(0,0),(1,0), (0, 1), (1, 1)} }.

- Note S(BK) # R (BK) as, e.g.,, {(0,1),(1,0)} ¢ S(B). This subset of BX has neither
meet nor join with respect to < and, thus, is not a sublattice of {BX, <}.

- The partially ordered set (S(BK), C) is a lattice. As it is non-empty and finite, it is also
a complete lattice.

- Thus, Tarski (1955) applies to any F: S(BY) — S(BY) that is monotone increasing.



Our Approach: Monotone Increasing Mapping
- As a preliminary step, for any C € S(BX), define
ﬁ(C) = {k =1,..., K: Ak(TC( upk(C))) < 0},
Q(C) ={k=1,..., K: Ak(re(infc(C))) > 0},
where, foreach k =1,...,Jand | # k,
[supk(C)]; := sw(sup(C)]; + (1 — si) [inf(C)];,
[infx(C)]; := swinf(C)]; + (1 — sw)[sup(C)];,

with [inf(C)]; and [sup(C)], the /th element of the meet and join, respectively, of the
partially ordered set {C, <}.

- In words, Q(C) incorporates a coordinate k = 1, .. ., J if and only if its marginal value
is negative when evaluated at the vector that maximizes such marginal value among
all consistent with those included in the set C; i.e., when evaluated at sup,(C).



Our Approach: Monotone Increasing Mapping
- Then, define the mapping F: S(BX) — S(BK) as
F(C)={CeC:Cr=0forallk e Q(C)and Cx =1 forallk € Q(C)}.
- Mapping F is monotone increasing; i.e., C C C' = F(C) C F(C’). Intuition:

C C C' = Vk Ax(rt(supk(C))) < Ak(m(supk(C'))) = Q(C") € O(C)
C C C' = Vk A(n(infe(C))) > Ax(m(infx(C'))) = Q(C") € Q(C)
and

g(c') ES(C) } = F(C) C F(C).

- As S(BK) is a complete lattice and F is monotone increasing, Tarski (1955) implies the
set of fixed points of F: S(BX) — S(BK) is a complete lattice with respect to C.



Our Approach: Learning about C*

- Given the definition of C* as
C* = argmaxgcprk71(C)
we know that, forallk =1, ..., J, it holds

Ci =0 <= A(7(C*)) <0 <= kecQ(C*) « [F(C")|x=0;
Ci=1 < A(r(C")) >0 <= keQ(C") — [F(C)|x=1,

where C* denotes the element of S(BX) whose only element is equal to C*.
- Therefore, F(C*) = C* and, thus, C* is a fixed point of F.
- Moreover, as we start the algorithm from Cy = BX and the algorithm converges to a

set C that is the supremum (given order C) of the fixed points of F, then it must be
the case that C* C C' and, thus, C* € C'.



Algorithm: Example

- Consider a setting with K = 3 and with s12 = 1, 513 = 0, and s3 = 0.
- As Cy = BX, then

BX ={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1), (1,1,1)}.
- As aresult, sup(Cp) = (1,1,1) and inf(Cp) = (0,0,0), and
sup1(Co) = [+, [sup(Co)]2, [inf(Co)l5] = [, 1,0],
supz(Co) = [[sup(Co)l1. -, [inf(Co)l5] = [1.-,0],
sups(Co) = [[inf(Co)l1, [inf(Co)], -] = [0,0, ],

and similarly

inf1(Co) = [-,0,1] inf(Co) = [0, -, 1] infs(Co) = [1.1, ]



Algorithm: Example (Cont.)

- Suppose

{A1(7t(sup1(Co))) < 0, Az(7r(sup2(Co))) > 0, Ag(7r(sups(Co))) > 0}
{A1(7(inf1(Cyp))) < 0, Ax(m(infa(Co))) < 0, As(7t(inf3(Cp))) > 0}

then
Q(Cy) =1 and O(Cy) = 3.
- Applying mapping F, we obtain:

F(Co)Z{CECOZC1 :0,03:1}2{(0,1,1),(0,0,1)}.



Algorithm: Example (Cont.)

- As Cy = F(Cy), then

C:=1{(0,1,1),(0,0,1)}.

- As aresult, sup(Cq) = (0,1,1), and inf(Cy) = (0,0,1), and
sup1(C1) = [, [sup(C1)]z, [inf(Cy)]s] = [+ 1, 0],
supa(C1) = [[sup(C1)]1, - [inf(C1)]a] = [0, -, 1],
sups(C1) = [[inf(C1)]1, [inf(C1)],.-] = [0,0,-],

and similarly

inf{(Cy) = [-,0,1] infa(Cy) = [0, -, 1] infg(C1) = [0,1,].



Algorithm: Example (Cont.)

- Consider two possible cases.
- Case 1. Suppose

{Aq(7(sup1(C1))) <0, Az(7t(sup2(Cy))) < 0, Az(mt(sups(Cy))) = 0}
{A1 (n(inf1 (01))) <0, AQ(TL’(iﬂfg(Cﬂ)) <0, A3(7T(inf3(C1))) > 0}

then
acy)={1,2} and Q(Cy)=3.
- Applying mapping F, we obtain:
F(Ci)={CeC1:C1=0,0=0,C3=1}=(0,0,1)

and we can conclude that C* = (0,0, 1).



Algorithm: Example (Cont.)

- Case 2. Suppose

{Aq(7(sup1(C1))) <0, Az(7t(sup2(C1))) = 0, Ag(7(sup3(C1))) = 0}
{A1(7(infy (C1))) <0, Aa(7(infa(Cy))) < 0, Ag(7(inf3(C4))) = 0}

then
Q(Cq) =1 and Q(Cy) =3.
- Applying mapping F, we obtain:
F(Ci)={CeC1:C1=0,C3=1}={(0,1,1),(0,0,1)} = Cy.

Thus, Cy is a fixed point of F and we can conclude that C* € {(0,1,1),(0,0,1)}.



Applying Solution Algorithm To Our Model




Solving the Model: Mapping 1

- Fix K = 2 x N x J; and define the lattice (S(BX), C).

We can then use the mapping F: S(BKX) — S(BK) described in slides 20 and 21 to
find a sublattice of B that includes the vector (/¥, D), defined as

(I, DF) = argmax ;. p,)epxI1;(f;, Dj).

- Only assumption needed to apply our algorithm is that in slide 12: the sign of all cross-
partials is known and independent of the vector (/;, D;) at which those are evaluated.

- See slide 10 for a description of the sign of all cross-partials in our model.



Solving the Model: Mapping 2

To introduce this second mapping, consider first a firm i that is single-product. Then,
D; = {Din}nand l; = {ljn} n, and we can write

D} = argmaxp, v Vi(D)) with Vi(D;) = max, pnIT;(1;, D),

Crucially, it is computationally feasible to solve exactly for the optimal /; given D;:

N N
Vi(D;) = Z max;, < 0,1} lin(7in(D Z

As V;(Dj) has negative cross-partials between any two coordinates o and o', we can
use our algorithm (or that in Arkolakis et al., 2024) to obtain bounds D; and D; on D;".
Defining /; := argmax; c gvI1; (1, D;), as I1;(1;, D;) has positive cross-partials between
any two coordinates o and n, it holds /; > [r. Similarly, if I; := argmax, . snI1;(1;, D)),
we have [; < [F. Then, for single-product firms, mapping 2 also yields bounds on /.



Solving the Model: Mapping 2

- Consider now on a firm j that is multi-product and, for any j € M;, define

Vii(Djj, li—j). Di—j)) :=
N
Y maxy, ¢ (0,13 lin(A7Tin( Dy, iy, Dic—jy) = Fi) + K(Dy li—jy, Dig—j),

n=1

with A;mip(+) firm i’s change in profits in country n depending on whether product j is
offered, and (D, li—jy D,-(,j)) the firm’s profits if [, =0 forallj=1,..., J.

- Proposition 1: D} = argmaxp, c g V;i(Dj, /,-*(,j)' D;‘H)).

- Proposition 2: For any (Dj, li—j), Dj—j), the function V;(Dy, l_;), Dj—;)) has negative
cross partials between coordinates jjo and jjo’ for any 0 # 0.

- Proposition 3: For any (Dy, li—j), Dj—j)), the function Vj;(Dy, li_;), Dj—) has negative
cross partials between coordinates jjo and jj'0’ for any j # j/ and between jjo and ij'n
foranyj # /.



Solving the Model: Mapping 2

- Given any (l,-(_/-), D,-(_j)), Proposition 2 implies we can use our algorithm to bound
Dj (i~ Di—j)) = argmaxp,c s Vi(Dy. fi—j). Di—))-
- Propositions 1 and 3 imply that
Dj (i) Dic—p)) < Dj < Djli—j), Dig—p),
for any 7,(,j), 5,(,j), li—j)»and Dj ) such that
Li—jy < I

i(=)) i)

< 7,-(_
Di(j) < D) < Dij-

- Even for multi-product firms, Mapping 2 helps us find bounds on Djj‘- for any jj.



Solving the Model: Combining Mappings 1 and 2

1. Fix (1,D) = (0,0) and (/,D) = (1,1).

2. Use Mapping 2 to obtain bounds on Dj;; i.e., production locations for model j = 1.

3. Use Mapping 1 to obtain bounds on [} given bounds on Dj;, (Ij_1y, Dj._1)) = (0,0)
and (/j_1y, Dj_1y) = (1,1).

4. Use Mapping 2 to obtain bounds on D;; given bounds on Dj; and I,*1 from steps 2 and
3, and given bounds (/;_ {1 2y), Di(—{1,23)) = (0,0) and (/;_¢1.2), Di—g1.23)) = (1.1).

5. Use Mapping 1 to obtain bounds on I} given previous bounds on (Dj, If, Dj) and
given bounds (/_12y, D_(12;) = (0,0) and (1 {12} D_ (1.2y) = (1,1).

6. Loop over all modelsj =1,..., M;.

7. lterate steps 2 to 6 until convergence of D,-j*. forallj=1,..., M;.



Multinational Firms in Global Car Industry: Summary Statistics




Data

- Data on global car industry:
- Source: IHS Markit (Cosar et al. 2018, Head and Mayer 2019, Alcott et al., 2024).
- Year: 2019.

- New car registrations: information by model (1,245) on brand-segment (375), production
(assembly) country (53) and registration country (77).

- Model price, quantity sold, and characteristics for Australia, Brazil, China, Spain, France,
Germany, UK, India, Italy, Japan, Mexico, and the US.
- Other sources of data:
- CEPII: geographical distance between countries.
- MacMap: car tariffs.
- World Bank: Income per capita and population per country.



Summary Statistics

MNEs are multi-product, with each product produced & sold in several countries.

Mean Mean

Number of: (unweigh.) (weight) P25 p50 p75 p90 Max
Models

(per brand-segment) 3.5 10.2 1 2 5 8 23

Sales countries 121 307 1 2 17 43 75

o e modeh 15 3 1 1 1 3 12




Other Statistics

Mean Mean | 125  p50  p75  p90  Max

Number of: (unweigh.) (weight.)
('Ef'e"rdcec!ﬁ,ﬁ?r'% 41.4 1379 11 31 65 102 387
Sales countries
(per brand-segment) 18.9 49.8 1 5 40 62 77
Production countries
(per brand-segment) 24 8.1 1 1 2 5 19
Share exported 387%  129% 0%  64% 94% 100% 100%

(by model-prod. loc.)

SQg;ebe;%%‘fgggr;“er'ﬂtQS 80.2%  44.1% 63.2% 100% 100% 100% 100%

(S{,‘?,rgf,‘é'_‘ie'gﬂgst) 612%  309% 19.9% 787% 100% 100% 100%




Estimation




Estimation Strategy

- Trade costs and marginal production costs parameters.
- Price equation.

- Demand function parameters.
- Revenue share equations: model within brand-segment, brand-segment within country.

- Fixed cost parameters.
- Moment inequalities.



Quantification: 2-Product Firms Comparative Statics




Quantification: 2-Product Firm

One brand-segment: Peugeot-wagon.

Two models: Peugeot 308 (non-electric) and Peugeot 508 (electric).

Initial firm choices:

- Both models produced only in France.
- Neither model sold in the US.

Match initial production choices and explore impact of US policies as a function of
initial sales choices.

US policies:
- Production subsidy (to marginal costs) for electric model in the US.
- Consumption subsidy for electric model in the US.



Production Subsidy for Electric Model in the US
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Production Subsidy for Electric Model in the US

Avg. Prob. of Product Entry
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Production Subsidy for Electric Model in the US

Sales by Destination
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Production Subsidy for Electric Model in the US

Sales by Origin
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Consumption Subsidy for Electric Model in the US
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Consumption Subsidy for Electric Model in the US
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Consumption Subsidy for Electric Model in the US
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Consumption Subsidy for Electric Model in the US

Log Variable Profits - Origin
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Quantification: Aggregate Policy Effects




Aggregate Counterfactual Policy Experiments

128 is drawn from the distributions of {v }, {v},}, and {djo}.

- Solve model for all segments and firms for each draw, each parameter in confidence
set, and each value of the policy parameters we consider:
- Production and Consumption Subsidies in the US favoring Electric Vehicles.
- Tariffs to World and to the EU on Electric Vehicles.

Report bounds by averaging over fixed cost and lottery draws.

Bounds reflect:

1. Parameter uncertainty (as reflected in confidence sets).
2. Solution uncertainty



Production Subsidy on Electric Products in the US
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Production Subsidy on Electric Products in the US
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Production Subsidy on Electric Products in the US

Variable Profits - Destination
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Production Subsidy on Electric Products in the US
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Production Subsidy on Electric Products in the US

Probability of Sourcing to the US
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Consumption Subsidy on Electric Products in the US

Production Location

1.00 -
— S A
MEX 05
5 — CAN s
8 G| B
§ 075 § 04l
C [ C
.2 e
F= =]
13 Q
> > 03
g 050 [ [ [ 'g
o o
“ -
° © 02t
g g I T 1
a 025 I o
o o o1fl I I I
E 2
x F 4 i i E -
0.00 | & ; T T T s 0.0 = & & z
0 20 40 60 80 929 ’ 0 20 40 60
Subsidy Rate (%) Subsidy Rate (%)

(a) Electric (b) Non-Electric



Consumption Subsidy on Electric Products in the US
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Consumption Subsidy on Electric Products in the US
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Consumption Subsidy on Electric Products in the US
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Consumption Subsidy on Electric Products in the US
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Tariffs on Electric Products Not Produced in the US
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Tariffs on Electric Products Not Produced in the US
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Tariffs on Electric Products Not Produced in the US
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Tariffs on Electric Products Not Produced in the US
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Tariffs on Electric Products Not Produced in the US
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Tariffs on Electric Products Produced in the EU
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Tariffs on Electric Products Produced in the EU
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Tariffs on Electric Products Produced in the EU
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Tariffs on Electric Products Produced in the EU
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Tariffs on Electric Products Produced in the EU
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Conclusion

Model of multi-product, multi-plant, and multi-market firms.

Novel algorithm for CDCPs with complementarities and substitutabilities.

Algorithm requires that, for any two coordinates, the sign of the cross-partial is known
and independent of third choices.

Moment inequalities to use algorithm in estimation.

Evaluate firm-level responses to consumption and production subsidies, and tariffs.



