Risk-based Organizational Choices

Eugenia Menaguale

Princeton University, Macro Student Workshop

April 28, 2022

FDI funds do not plummet with uncertainty

Conditional Correlations of Liability Flows With the VIX, Quarterly, 1990:Q1 to 2012:Q4

Correlations inflows / VIX	North America	Latin America	Central, Eastern Europe	Western Europe	Emerging Asia	Asia	Africa
Equity	-0.06	-0.31	-0.32	-0.38	-0.08	-0.34	-0.25
FDI	0.10	0.35	0.07	0.06	0.08	0.16	0.07
Debt	-0.30	-0.15	-0.36	-0.23	-0.28	-0.06	-0.22
Credit	-0.29	-0.15	-0.16	-0.24	-0.26	0.09	-0.14

Figure: Source: Rey (2015), Jackson Hole speech.

US, supply chains are heterogeneous

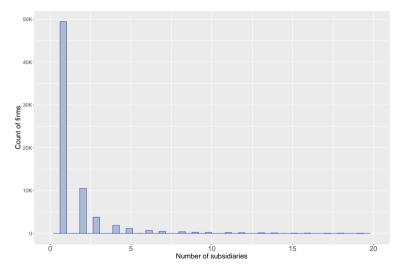


Figure: Source: Dun&Bradstreet domestic establishment-level data, 2017. Firms=70,115, Subs=148,045.

US, integration targets some sectors

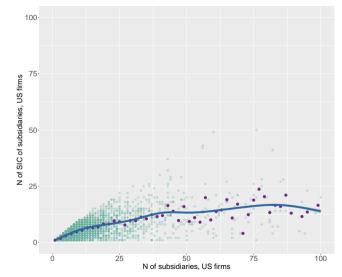


Figure: Source: Dun&Bradstreet domestic establishment-level data, 2017. Firms=70,115, 3/22

US, integration of plants and upstream risk

Ranking	SIC 4	Subsidiaries	Description	
Top, all see	ctors			
1	6411	3096	Insurance Agents, Broker Services	
2	7389	2632	Business Services	
3	8742	2444	Management Consulting	
4	8011	2440	Offices and Clinics of Doctors of Medicine	
5	6531	2381	Real Estate Agents and Managers	
Bottom, al	l sectors			
1	2517	1	Wood Television, Radio Phonograph	
2	7241	1	Barber Shops	
3	2257	1	Weft Knit Fabric Mills	
4	3142	1	House Slippers	
5	2397	1	Schiffli Machine Embroideries	
Top, manu	facturing	g		
1	2711	823	Newspapers: Publishing or Printing	
2	2834	767	Pharmaceuticals Preparations	
3	3089	727	Plastic Products	
4	3714	641	Motor Vehicle Parts and Accessories	
5	3841	494	Surgical and Medical Instruments and Apparatu	
6	3674	435	Semiconductors	
7	2869	347	Industrial Organic Chemicals	
8	2752	316	Commercial Printing, Lithographic	
9	3679	291	Electronic Components	
10	3842	287	Orthopedic, Prosthetic and Surgical Appliances	
Bottom, m	anufactu	ıring		
1	2517	1	Wood Television, Phonograph	
2	2257	1	Welft Knit Fabric Mills	
3	3142	1	House Slippers	
4	2397	1	Schiffli Machine Embroideries	
5	2259	1	Knitting Mills	

US, integration of plants and upstream risk

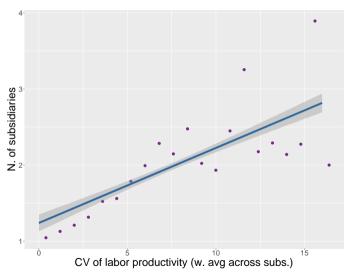



Figure: Source: Dun&Bradstreet domestic establishment-level data, 2017. Firms=70,115, 100,045

Research Question

How does **upstream risk** influence incentives to acquire **ownership** along the supply chain?

Off-the-shelf model of firm boundaries, Antràs (2003)

- Trading in **specific inputs** is subject to contract incompleteness
- First, irreversible specific investments. Then, ex-post bargaining over surplus
- Bargaining power distorts specific investments: high weight, invest more
- Organizational form = allocation of bargaining power

Off-the-shelf model of firm boundaries, Antràs (2003)

- Trading in **specific inputs** is subject to contract incompleteness
- First, irreversible specific investments. Then, ex-post bargaining over surplus
- Bargaining power distorts specific investments: high weight, invest more
- Organizational form = allocation of bargaining power

- Exogenous shocks to supplier have same effect on joint surplus regardless of organizational form
- Vertical integration not helpful to deal with disruptions to upstream supply
- → Organizational choice does not depend on level of risk

Model setup

- A buyer, B and a supplier, S (of a specific input)
- Contract incompleteness
- → Disruptions hit upstream and hinder efficiency of S
- \rightarrow B could take costly actions to address this (h)
 - Signal from U to D about damage to S
 - $lue{}$ Precision depends on investments in transparency a ex-ante, q ex-post
- \rightarrow Vertical integration: B acquires trade secrets of S priced at f, wins chance to visit U if shock hits and set appropriate q

Model setup

- A buyer, B and a supplier, S (of a specific input)
- Contract incompleteness
- → Disruptions hit upstream and hinder efficiency of S
- \rightarrow B could take costly actions to address this (h)
 - Signal from U to D about damage to S
 - Precision depends on investments in transparency a ex-ante, q ex-post
- \rightarrow Vertical integration: B acquires trade secrets of S priced at f, wins chance to visit U if shock hits and set appropriate q

Preview: Ownership = trade-off b/w ex-ante and ex-post leverage on disruptions → outcome will depend on characteristics of the shock process: frequency, dispersion...

Timing

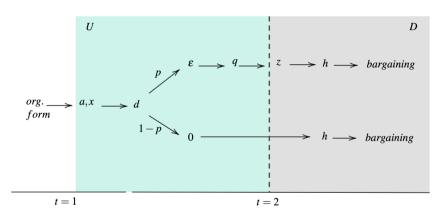


Figure: Timing. Signal from U to D: $z \sim \Sigma(z; a, q)$

A concrete example

- **B**= Harley Davidson← **S**=Tier 1, pistons←Tier 2 raw materials
- Disruption: raw materials from 2 inadequate, parts break
- B can adapt process, need to analyze batch of minerals

Model: characterization, Buyer

By backward induction, More modelling

Time 2, locations U and D - vertical integration

$$q^*(\varepsilon, a, x) \in \arg\max_q \mathsf{E}_{\mathsf{Z}}[V_v^B] = \int_{\mathsf{Z}} [\phi_{\scriptscriptstyle V} R(x, h_v^*(z), \varepsilon) - c_h^B \, h_v^*(z)] d\Sigma(z; a, q) - p c_q^B \, q$$

$$h_{\nu}^*(\boldsymbol{z},\boldsymbol{a},\boldsymbol{x},q) \in \arg\max_{\boldsymbol{h}} E_{\varepsilon|\boldsymbol{z}}[V_{\nu}^B] = \int_{\varepsilon} \phi_{\nu} R(\boldsymbol{x},\boldsymbol{h},\varepsilon) dF(\varepsilon|\boldsymbol{z};\boldsymbol{a},q) - p c_q^B q - c_h^B h$$

Time 2, locations U and D - outsourcing

$$q^* = 0$$

$$h_o^*(\textcolor{red}{z}, a, x, 0) \in arg\max_h E_{\varepsilon|\textcolor{blue}{z}}[V_o^B] = \phi \int_{\varepsilon} R(x, h, \varepsilon) dF(\varepsilon|\textcolor{blue}{z}; a, 0) - c_h^B h$$

where

$$\phi_{\vee} = [\delta^{\alpha} + \phi(1 - \delta^{\alpha})] \ge \phi$$

Model: characterization, Supplier and organization

By backward induction,

Time 1, location U - vertical integration

$$(a_{\scriptscriptstyle V}^*,x_{\scriptscriptstyle V}^*)\in arg\max E_z[E_{\scriptscriptstyle {\cal E}|z}[V_{\scriptscriptstyle V}^{\cal S}|z]]$$

Time 1, location U - outsourcing

$$(a_o^*, x_o^*) \in arg \max E_z[E_{\varepsilon|z}[V_o^S|z]]$$

Time 0, organizational choice

B integrates S iff
$$E[V_v^B - V_o^B] = E_z[E_{\varepsilon|z}[V_v^B - V_o^B|z]] \ge f$$

Discussion: transparency and residual rights

- B and S have absolute advantage in different types of investments in transparency $(c_a^S = \infty, c_a^B = \infty)$
- Under vertical integration, S anticipates lower share of revenues → potential under investment in a
- Under **outsourcing**, B will have to keep out from trade secrets of S \rightarrow ex-post investment q is zero

Simulations - an elementary increase in risk

Suppose support of shock has dimension 3:

$$\varepsilon \in [low, medium, high] \quad p(\varepsilon) = [p_l, p_m, p_h]$$

- Consider a MPS to $p(\varepsilon)$: some mass of the probability distribution moves to the tails
 - $ightarrow \sigma_{arepsilon}$ increases by 13.5% but the mean does not change

How does the relative value of vertical integration change?

Simulations - an elementary increase in risk

Suppose support of shock has dimension 3:

$$\varepsilon \in [low, medium, high] \quad p(\varepsilon) = [p_l, p_m, p_h]$$

- Consider a MPS to $p(\varepsilon)$: some mass of the probability distribution moves to the tails
 - $ightarrow \sigma_{\!arepsilon}$ increases by 13.5% but the mean does not change

How does the relative value of vertical integration change?

$$\rightarrow$$
 6x increase in $E[V_v^B - V_o^B]$

Posterior distribution given signal z_m : a = 0

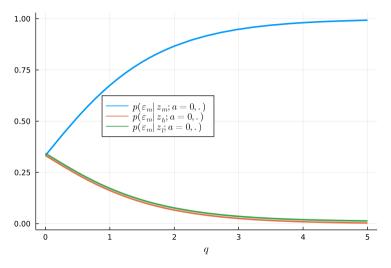


Figure: Effect of B's investment on posterior.

Posterior distribution given signal z_m : a = 1

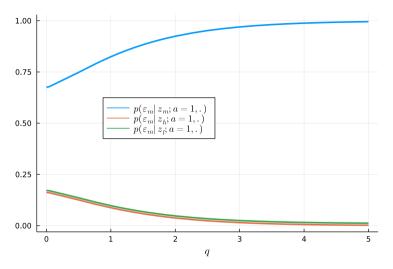


Figure: Effect of B's investment on posterior.

B policy: choice of h - outsourcing

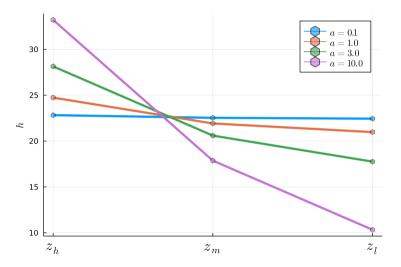


Figure: Policy function, *x* fixed.

B policy: choice of h - vertical integration

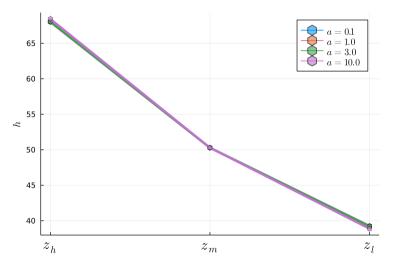


Figure: Policy function, *x* fixed.

B policy: choice of q - vertical integration

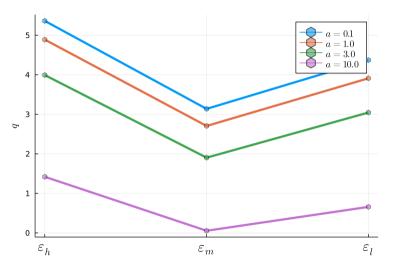


Figure: Policy function, *x* fixed.

S policy: choice of a, x - vertical integration

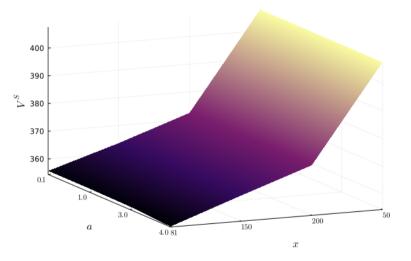
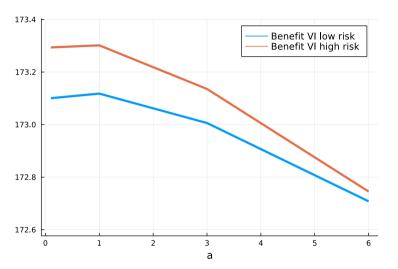



Figure: Value function of S.

$E[V_v^B - V_o^B]$

Conclusion

- Propose a simple model to make the point that ownership can be a tool to manage upstream risk
- → The configuration of upstream risk (frequency and dispersion of disruptions) is a determinant of organizational choice
- Obtain several implications testable in the cross-section of industries (e.g. we should see more integration in industries subject to large and rare events)

Next step:

How do organizational choices impact strength of propagation channels?

Literature Review: firm boundaries and uncertainty

- Firm boundaries and contractual frictions: Grossman and Hart (1986); Antràs (2003); Antràs and Helpman (2002); Antràs and Chor (2013); Chor and Ma (forthcoming); Oberfield and Boehm (2020)
- Ex-post supply assurance: Carlton (1979); Baker et al. (2002)
- Supply chains and uncertainty: Arrow (1975); Alfaro et al. (2018); Rigobon et al. (2021); Pankratz and Schiller (2019); Grossman et al. (2021); Ramondo et al. (2013)
- Production networks (formation and propagation) Oberfield (2018); Acemoglu and Azar (2020); Huneeus (2018); Acemoglu et al. (2016)
- Intra-firm trade (or lack thereof): Yi (2003); Johnson and Noguera (2012); Atalay et al. (2014); Ramondo et al. (2016)

Model

Back Technology

$$y = ((1-\eta)*(x-\varepsilon)^{\nu} + \eta*h^{\nu})^{\frac{1}{\nu}} \quad \nu < 1$$

Revenues

$$R(x,h,\varepsilon) = A^{1-\alpha}y^{\alpha} \quad \alpha < 1$$

Shocks

$$\xi = \mathbb{1}[d=1] \varepsilon$$
 where $P(d=1) = p$ and $\varepsilon \sim F(\varepsilon)$

Signal from U to D

$$z \sim \Sigma(z; a, q)$$

Investments B and S can invest in transparency: S chooses a ex-ante, B chooses q ex-post

Model: payoffs

Under **outsourcing**:

$$V_o^B = \phi R(x, h(z), \varepsilon) - c_h^B h$$

$$V_o^S = (1 - \phi)R(x, h(z), \varepsilon) - c_x^S x^2 - c_a^S a$$

Under **vertical integration**:

$$V_{v}^{B} = \phi_{v}R(x,h(z),\varepsilon) - pc_{q}^{B}q - c_{h}^{B}h - f$$

$$V_{v}^{S} = (1 - \phi_{v})R(x, h(z), \varepsilon) - c_{x}^{S}x^{2} - c_{a}^{S}a$$

where

$$\phi_{\vee} = [\delta^{\alpha} + \phi(1 - \delta^{\alpha})] \ge \phi$$

Notice: $\delta \to 1$ $\phi_{\nu} \to 1$ and VI is always preferred, $\delta \to 0$ $\phi_{\nu} \to \phi$ and outsourcing is always preferred. Focus on the case $\delta \in (0,1)$.

Model

Incomplete contracting

S and B cannot contract on a, q: former not verifiable, for latter it is not possible to enumerate all disruption scenarios

Nash bargaining

After production, B and S bargain over the division of revenues. B will get a fraction ϕR

Organizational form

B can integrate S by paying f, i.e. buying the trade secrets and intellectual property of S

Outside option

Under VI, B can operate upstream machinery at lower productivity and produce low-quality final good

$$\delta y \rightarrow \delta^{\alpha} R$$

